catalysis-hub.org Documentation

Kirsten Winther, Max J. Hoffmann

Mar 22, 2019

Contents

1 Topics
I.1 Databaseschema L e
1.2 GraphQL Queries o o i e e e e e e e e e e e e
1.3 GraphQL Cheat Sheet e e e e e
2 Submitting data
2.1 SUNCAT groupmembers e e e
2.2 Installing CatHub 00 e e
23 Organizingdata. oL e e e e
24 cathuborganize e e e e e e e e e e e e e e e
2.5 cathubmake folders
2.6 Readingintodatabase e
3 Tutorials
3.1 Searching for reaction €nergies« v v it i e e e e e e e e e e e e e e e e
3.2 GraphQL o e e e e
3.3 Custom GraphQL clients o e e e e e e
3.4 Connecting to the database with ASEdb o
3.5 Usingthe CatHub cli o L e e e e e e e e e
3.6 IPython Notebook tutorials for APTusage ittt
377 Partner Projects e e
4 Reference
A1 ADD - o e e e e e e
A2 ADDS - e e e e e e e
43 SchemaTypes o o i i e e e e e e

5 Troubleshooting

6 Indices and tables

Python Module Index

NS NS R

O N NN L

19
19
23
26

33

35

37

CHAPTER 1

Topics

Below you can find documentation about the database structure and GraphQL.

1.1 Database schema

An overview of the database schema is given in the figure below.

catalysis-hub.org Documentation

name text

value text

information

st sysen sty

[number key values | [species | [tent ey values
keys
ey toxt 7 integer key text
fey toxt
value double precision 0 integer value text
id integer K
i integer K id integer FK. id ineger FK

e ey mction,yen ey ks sy oy

T
systems
i seral 3
unique id text
ctime double precision
miime double precision
username text
numbers integer|
positions double precision] |
cell double precision/]
phe integer & I reaction
initial_ magmoms double precision/| ia soral publication
iniial_charges double precision/| chomical_composition text ia serial | PK
masses double precisionf] surface_composition text pub_id text
tags integer] facet ext tide text
momenta double precisionf] sites jsonb auhors jsonb
reaction_system
constraints text coverages jsonb journal text
publication system name et
calculator text reactants jrob volume tent
aseid text PKFK energy correction numeric
calculator_parameters. jsonb products jrob number tent
pubid_text PK ase.id et KRR
energy double precision reaction energy numeric pages text
id integer PK_FK
free_energy double precision activation_energy numeric year smallint
forces double precision]| dft code et publisher text
stress double precision] | it functional ext doi text
dipole doube precision] | username et gs jsonb
magmoms double precision|| pub_id et pubtextsearch_tsvector
magmom double precision tentsearch svector
chargos double precisionf]
key_value_pairs jsonb
dta jsonb
natoms integer
fax double precision
smax double precision
volume double precision
mass double precision
charge doube precision

The database structure builds upon the ASE-database (https://wiki.fysik.dtu.dk/ase/ase/db/db.html) that uses the ta-
bles: systems, species, keys, text_key_values, number_key_values, information. These are used for storing atomic
structures and calculational information.

On top is the tables reaction and publication which are used to store reaction energies and publication info for CatApp
v2.0.

The tables reaction_system and publication_system links the ASE and CatApp parts together.

1.2 GraphQL Queries

Go to the backend interface at http://api.catalysis-hub.org/graphql to start using our graphQL browser.

Type your query in the left panel. In order to perform queries on the reactions table start with:

{reactions (first:2)}

And type command + return to see the result on the right hand. This should return the id of the first two reactions in
the database. Notice that the left hand side is updated as well.

See the tutorials at http://catalysis-hub.readthedocs.io/en/latest/tutorials to learn more.

1.3 GraphQL Cheat Sheet

Tables:

2 Chapter 1. Topics

https://wiki.fysik.dtu.dk/ase/ase/db/db.html
http://api.catalysis-hub.org/graphql
http://catalysis-hub.readthedocs.io/en/latest/tutorials

catalysis-hub.org Documentation

* reactions

e publications

* systems

* reactionSystems

Start your query with the table name followed by a query:

{table (field:value) }

Query fields:
* Text fields:
— field=value: (field: “value”)
- field@>value: (field: “~value”)
— distinct field: (field: “~”, distinct: true)
* Integer / Float fields:
— field=value: (field: value)
— field>value: field:value, op: ”>)
* Special fields:
— first, last : int

distinct: true/false

before, after : strid

— order: sort by column: (order: “field”) or (order: “-field”)
- op: ['=, >, <, >=, <=, (=]
* Output fields (systems table)
— InputFile(format: “’vasp”)
* Special attributes:
— totalCount: # entries
— pagelnfo: pagination

Incude the special attributes like this:

{table (<field>:<value>) {
totalCount
pageinfo
edges {
node {
id
}

H}

1.3. GraphQL Cheat Sheet 3

catalysis-hub.org Documentation

4 Chapter 1. Topics

CHAPTER 2

Submitting data

Please submit your electronic structures calculations for surface reactions! Data submissions will be part of the Sur-
face Reactions app at http://www.catalysis-hub.org/energies (essentially CatApp v2.0) and is open to all institutions.
Furthermore, the atomic structures that are part of your reaction can be utilized for other apps.

Your publication/dataset will be listed on the http://www.catalysis-hub.org/publications page, with a link to the pub-
lishers homepage (if already published). Your data will be easily accessible to other researchers, who will be able to
browse through reaction energies and atomic structures from your publication.

2.1 SUNCAT group members

If you’re a member of the SUNCAT group, you can add your data to one of the folders on the Sherlock or SUNCAT
cluster:

* SHERLOCK?2 : /home/users/winther/data_catapp/
* SUNCAT : /nfs/slac/g/suncatfs/data_catapp/
Start by activating the corresponding virtualenv. On SHERLOCK2

’. /home/users/winther/data_catapp/CATHUBENV/bin/activate

or on SUNCAT

’. /nfs/slac/g/suncatfs/data_catapp/CATHUBENV/bin/activate

to use the local installation of CatHub. You should see a (CATHUBENYV) at the beginning of your prompt now to
indicate that all python script and libraries are first imported from the virtualenv. To return your shell to the previous
state simply type:

deactivate

or log out. Now you can go straight to cathub organize .

Alternatively you can install your own version of CatHub - see instructions below.

http://www.catalysis-hub.org/energies
http://www.catalysis-hub.org/publications

catalysis-hub.org Documentation

2.2 Installing CatHub

CatHub is a python module that is used to interface the Surface Reactions database of Catalysis-Hub, directly from a
python script of the command line. CatHub will be used to arrange your data into folders and submit your data to the
server. To install CatHub, together with the ASE dependency, use pip:

pip install git+https://github.com/kirstenwinther/CatHub.git#egg=cathub —--upgrade —-—
—user ——-process—dependency-1inks

which will install a developer version of ASE with an enhanced database module, CatHub and all their dependencies.

To test that the cathub cli is working, start by typing:

cathub

And you should see a list of subcommands. If it’s not working you probably have to add the installation path to PATH
in your ~/.bashrc. This would typically be export PATH=~/.local/bin:${PATH} for Linux, and export
PATH~/Library/PythonX.Y/bin:${PATH} for Mac.

2.3 Organizing data

You have two options for organizing your data:

* cathub organize: For larger systematic datasets without reaction barriers, this approach will create folders and
and arrange your data-files in the right location for you.

* cathub make_folders: For smaller or more complicated datasets with reaction barriers, this method will only
create your folders, and you will have to drop the files in the right location yourself.

In either case no data will be uploaded to catalysis-hub.org/publications before you run cathub db2server Once
you uploaded data it will be held in a moderation stage which you can inspect yourself at catalysis-hub.org/upload and
delete yourself to iterate until all structures and energies look as expected. Once you are satisfied with your uploaded
dataset there will be a “Release” button that will notify the platform administrator that the dataset is ready for release.

2.4 cathub organize

This tool will take all your structure files from a general folder and organize them in the right folder-structure that
can be used for data submission. Note: this approach does not work for transition states / barrier calculations. And it
will still need a lot of manual file organization for co-adsorbate configurations. While we are working on this cathub
organize might still give you a nice head start with file organization.

To learn about the organize command, type:

cathub organize --help

To read the data from a general folder, type:

cathub organize <FOLDER> -a ADS1,ADS2 -c <dft-code> -x <xc-functional> -f <facet> -S
—<crystal structure>

Use the —a option to specify which adsorbates to look for. Also, please use the —c and —x options to specify the DFT
code and xc-functional respectively. Furthermore, you are highly encurraged to use the —f and —S options to specify
the surface facet and crystal structure when applicable.

6 Chapter 2. Submitting data

https://www.catalysis-hub.org/publications
https://www.catalysis-hub.org/upload

catalysis-hub.org Documentation

This will generate an organized folder named <FOLDER>.organized. Please open the .txt file <FOLDER>.
organized/publication.txt, and update it with info about your publication. It should look something like
this:

volume: 8

publisher: Wiley

doi: 10.1002/cssc.201500322

title: "The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the
—Role of Nitrogen Scaling Relations"

journal: ChemSusChem

authors: [Montoya, Joseph H., Tsai, Charlie, Vojvodic, Aleksandra, Norskov, Jens K.]
year: 2015

email: winther@stanford.edu

number: 13

tags: []

pages: 2140-2267

Remember your email since it will be used to log in at http://www.catalysis-hub.org/upload. Note that authors should
be a list, with names in the form “lastname, firstname M.”.

Please go through the created folder and rename folders to make your data easier to localize later. For example, a
structure folder like Pt16_structure, could be changed to Pt16_fcc or Pt16_bcc respectively. Please do not use spaces
in folders or file-names.

If you, for example, have calculations with different facets, you can also split them into separate folders, run cathub
organize —-f <facet>, and them merge the organized folders together afterwards with co —R organizedl
organized2.

2.5 cathub make folders

An alternative to cathub organize. This tool will create the right folder structure for you, but you must dump
your files yourself.

To learn about the make_folders command type:

’cathub make_folders —-help

Then create a folder in your user-name, ‘cd’ into it and type:

’cathub make_folders —--create-template TEMPLATE_NAME

This will create a template (txt/yaml) file, that you should update with your publication and reaction info. The template
should look similar to this:

reactions:

- reactants: [2.0H20gas, -1.5H2gas, star]
products: [OOHstar@top]

- reactants: [CCH3star@bridge]
products: [Cstar@hollow, CH3star@ontop]

- reactants: [CH4gas, -0.5H2gas, star]
products: [CH3star@ontop]

journal: JACS

year: 2017

email: winther@stanford.edu

number: 1

crystal_structures: [fcc, hcp]

(continues on next page)

2.5. cathub make_folders 7

http://www.catalysis-hub.org/upload

catalysis-hub.org Documentation

(continued from previous page)

volume: 1

DFT_functionals: [BEEF-vdW, HSEQ06]
authors: ['Doe, John', 'Einstein, Albert']
pages: 23-42

publisher: ACS

doi: 10.NNNN/....

title: "Fancy title"

bulk_compositions: [Pt]

DFT_code: Quantum Espresso

facets: ['111'"]

Consult cathub make_folders --help again for detailed instructions on how to specify the types of reactions
and surfaces.

Then type:

cathub make_folders <TEMPLATE>

And your folders will be created. You can check that they look right with t ree —F <FOLDER>. The template above
will produce the following folder tree:

Stree -F MontoyaChallenge2015/

MontoyaChallenge2015
— Quantum\ Espresso/
L — BEEF-vdW/
— Co_fcc/
— 111/
—— 0.5H2gas_star__ Hstar@bridge/
I: MISSING:H_slab
MISSING:TS?
—— 0.5H2gas_star__ Hstar@fcc/
I: MISSING:H_slab
MISSING:TS?
—— 0.5H2gas_star___Hstar@hollow/
I: MISSING:H_slab
MISSING:TS?
——— 0.5H2gas_star__ Hstar@ontop/
I: MISSING:H_slab
MISSING:TS?
— 0.5N2gas_0.5H2gas_star__ NHstar@bridge/
I: MISSING:NH_slab
MISSING:TS?
— 0.5N2gas_0.5H2gas_star__ NHstar@hollow/
I: MISSING:NH_slab
MISSING:TS?
—— 0.5N2gas_star__ Nstar@hollow/
I: MISSING:N_slab
MISSING:TS?
L— MISSING:empty_slab
L— MISSING:Co_fcc_bulk
L— gas/
|: MISSING:H2_gas
MISSING:N2_gas
-— publication.txt

Then add your atomic structure output files to the right folders. The files can be in any format that ASE can read,

8 Chapter 2. Submitting data

catalysis-hub.org Documentation

and must contain the total potential energy from the calculation. ASE trajectory (.traj) files are generally preferred. If
you’re using Vasp, please add your OUTCAR files as <name>.OUTCAR. Your structures will include the adsorbed
atoms/molecules, empty slabs, and gas phase species for your reactions. Also, if you have done calculations for the
bulk geometries, please include them as well. All gas phase species involved must be added to the <publication>/
<dft code>/<dft functional>/gas/ folder. Also, notice that dummy files named MISSING: .. have
been placed in the folders, to help you determine the right location for your files. It’s recommended to write a script to
transfer files from one folder-structure to another in a systematic way, for example using shutils.copyfile ('/
path/to/initial/file', '/path/to/final/file').

2.6 Reading into database

After adding all your structure files (or after running cathub organize), read your structures into a local database file
with the command:

’cathub folder2db <FOLDER>

If anything is wrong with your files, or anything is missing, you should receive appropriate error messages. When
reading of the folder is complete, a table with a summary with reaction energies will be printed in you terminal. Please
verify that everything looks right. Also, a database file has been written at <FOLDER>/<DBNAME> . db.

Upload your data to the server by typing:

cathub db2server <DBNAME>.db

and follow the feedback in the terminal. Your data will not be made accessible from catalysis-hub.org before you
have approved. Send an email to Kirsten Winther, winther @stanford.edu, and request to have your data made public.
Please include the email you defined above.

2.6. Reading into database 9

mailto:winther@stanford.edu

catalysis-hub.org Documentation

10 Chapter 2. Submitting data

CHAPTER 3

Tutorials

3.1 Searching for reaction energies

Here you will learn how to use the webpage to search for chemical reactions. Go to http://www.catalysis-hub.org/
energies to use the build in search function. This feature corresponds to CatApp v2.0 where you can access reaction
energies and barriers for different surfaces.

1) Type something in the reactants field and press the search button (for example CH3CH20H*). How much is
returned? Try to decrease the number of reactions by filling out the Products, Surface and Facet fields.

2) Look at the atomic structures associated with a reaction of choice. Hint: press the cube icon to the left of the
reaction. (Note: a few of the reactions doesn’t have structures associated with them).

3) Interested in knowing how the data is pulled from the database backend? Click the GRAPHQL QUERY button
below the list of reactions, and see how you search looks from the backend interface.

3.2 GraphQL

These tutorials will focus on how to use the GraphQL interface to the database. You might also want to read the
documentation at http://catalysis-hub.readthedocs.io/en/latest/topics .

Go to http://api.catalysis-hub.org/graphqgl to get started.

3.2.1 A simple query

Type your query in the left panel. In order to perform queries on the reactions table try this:

{reactions (first:2)}

And type command + return to see the result in the right panel. This should return the id of the first two reactions in
the database. Notice that the left hand side is updated as well.

11

http://www.catalysis-hub.org/energies
http://www.catalysis-hub.org/energies
http://catalysis-hub.readthedocs.io/en/latest/topics
http://api.catalysis-hub.org/graphql

catalysis-hub.org Documentation

A general note: Always include one of the ‘first’ or ‘last’ field in your query to limit the number of results. (Otherwise
things could get slow!).

Now try to add more columns after id and see what happens. For example:

{reactions (first:2) {
edges {
node {
id
Equation
chemicalComposition
reactionEnergy

}
H}

For a complete list of all the tables in the database, and the associated columns, see the Docs tab on the top right of
the GraphiQL page. There is also a schema overview posted at http://docs.catalysis-hub.org/reference/schema.html .

In order to make selections on the result, add more fields after (first:2). For example:

{reactions (first:2, reactants: "CO", chemicalComposition: "Pt")}

Notice that it’s possible to construct queries for all the existing columns in a table.

3.2.2 Searching for publications

1) Find all titles and DOI’s from publications with year=2017.
2) How many publications are there with year>2015?

3) How many publications are authored by Thomas Bligaard? Hint: use the pubtexsearch field. You can list the
total number of results using the toralCount field:

{publications {
totalCount
edges {

node {
id
authors

}
b}

Verify that you get the same result by using (authors: "~bligaard")

4) Find Michal Bajdich’s paper with “Oxygen Evolution” in the title.

3.2.3 Using the reactions table

1) Order all the reactions with respect to increasing reaction energy and print out the first 100 results.

2) Find the reactions with the lowest activation energy. Hint: take care of ‘null’ results by requesting that the
activation energy should be > 0.

3) Find the number of reactions with H2O on the left hand side and OH on the right hand side. How many distinct
reactions does that give rise to? What happens when you add the state (star or gas) to your query? What happens
when you add chemicalComposition: "

n

12 Chapter 3. Tutorials

http://docs.catalysis-hub.org/reference/schema.html

catalysis-hub.org Documentation

4) Chose a few of the reactions from the query before, and get all the chemical formula of the atomic structures
beloning to them Hint: you can call the ‘systems’ table inside the ‘reactions’ table.

5) Find the publication year for the first 10 reactions in exercise 1)

3.2.4 Combining tables

1) Find Julia Schuman’s recent paper, and list all the reactions belonging to the paper. Hint: you can either go
through the publication table:

{publications (first:10) {
edges {
node {

id
title
pubId
authors
reactions

}

H}

or use the publd field to query directly on the reactions table to make additional queries:

reactions (pubId: "")}

2) Using the (pubID:) solution suggested above, list all the distinct a) reactions b) surfaces from Julia’s publi-
cation.

3) Chose one of Julia’s reactions and find the aseld of the empty slab. Hint: It has "name"="star" in the
reactionSystems table. Copy the aseld and use it to find all the reactions that are linked to that particular empty
slab.

3.3 Custom GraphQL clients

3.3.1 Calling the Backend from the Command Line

This is easy using curl or wget:

curl -XPOST https://api.catalysis—hub.org/graphgl --data 'query={systems (last: 10) {
edges {
node {
energy Cifdata
}
}
D

Check out jq, yaml2json, json2yaml, or glom for terse json processing on the command-line. Try this:

curl -XPOST https://api.catalysis—hub.org/graphgl --data 'query={systems (last: 10) {
edges {
node {
energy Cifdata
}

(continues on next page)

3.3. Custom GraphQL clients 13

https://stedolan.github.io/jq/manual/
https://www.npmjs.com/package/yaml2json
https://www.npmjs.com/package/json2yaml
http://glom.readthedocs.io/en/latest/tutorial.html

catalysis-hub.org Documentation

(continued from previous page)

}
}}'" | Jg '.data.systems.edges[].node.Cifdata' | sed -e 's/"//g' | split - -1 1
—structure_ -d

sed -i 's/\\n/\n/g' structure_x*

to write structures into many files. Or try this:

curl —-XPOST https://api.catalysis—hub.org/graphgl --data 'query={
reactions (reactants:"CO") {
totalCount
edges {
node {
chemicalComposition
reactionEnergy
sites

}
' | jg -r '.data.reactions.edges[].node | [.reactionEnergy, .chemicalComposition,
—sites] | @csv'

for creating a CSV output.

3.3.2 Calling the Backend from a Python Script

Write a short python script with a GraphQL query of your choice. The script should look something like this:

import requests
import pprint

root = 'http://api.catalysis—hub.org/graphgl’

query = \

mmn

{}

data = requests.post (root, {'gquery': query}).json()

pprint.pprint (data)

And see the result printed in the terminal. How would you like to save the data?

3.3.3 Calling the Backend from a Perl Script

Write a short Perl script with a GraphQL query of your choice. This result could look something like this

#!/usr/bin/env perl
require LWP: :UserAgent;

my Suri = 'http://api.catalysis-hub.org/graphgl’;
S n = <<'EOF';

(continues on next page)

14 Chapter 3. Tutorials

catalysis-hub.org Documentation

(continued from previous page)

{"query": "{
reactions (first: 10) {
edges {
node {
Equation
chemicalComposition
reactionEnergy

}
P
EOF

remove newlines
$json =~ s/ (\nl|\r)//g;

my Sreq = HTTP::Request->new('POST', Suri);
Sreg->header ('Content-Type' => 'application/Jjson');
Sreg->content ($son);

my S$Slwp LWP: :UserAgent->new;
my Sres = Slwp->request(Sreq);

print Sres->content . "\n";

3.3.4 Calling the Backend from JavaScript

#!/usr/bin/env node
var axios = require('axios');

axios.post ('http://api.catalysis-hub.org/graphqgl’,
{query: "
{
reactions (first: 10) {
edges {
node {
Equation
chemicalComposition
reactionEnergy

) .then (function (response) {
console.log (JSON.stringify (response.data))

b

3.3.5 Calling the Backend from Coffee Script

#!/usr/bin/env coffee

(continues on next page)

3.3. Custom GraphQL clients

15

catalysis-hub.org Documentation

(continued from previous page)

axios = require 'axios'

axios.post 'http://api.catalysis-hub.org/graphgl', {query:"{
reactions (first: 10) {

edges {
node {
Equation
chemicalComposition
reactionEnergy
}
}
}
}
"}
.then (response) —>

console.log JSON.stringify response.data

3.3.6 Connecting to the database server with psql

This exercise requires that you have postgreSQL installed, so you can use the psql terminal client. Also you
need the password for the catvisitor user, or optionally your own user account. Contact Kirsten Winther at
winther @stanford.edu for question.

Type into the terminal:

psgl ——-host=catalysishub.c8gwuc8jwb71l.us-west-2.rds.amazonaws.com
——port=5432 --username=catvisitor --dbname=catalysishub

And write the password when prompted.

Now you can start writing SQL statements directly against the database server. Try for example:

SELECT title, year from publication LIMIT 10;

and see the output. Please use the LIMIT clause to limit the number of results, or specify id=int. See https:
/Iwww.postgresql.org/docs/9.6/static/index.html for documentation on the SQL language and postgres.

3.4 Connecting to the database with ASE db

For this exercise you need to have a recent version of ASE installed. See https://wiki.fysik.dtu.dk/ase/install.html .

1) Now use the ASE cli to connect. Type this in the terminal (with an updated DB_PASSWORD):

ase db postgresgl://catvisitor:$DB_PASSWORD@catalysishub.
c8gwuc8jwb71l.us-west-2.rds.amazonaws.com:5432/catalysishub Pt3Co

(Note: this query is probably going to take some time. We’re still working on optimizing the ASE database part.)

2) Write a python script to connect via ase.db.connect. Hint: the connect() function will take the same server URL
as used in the previous exercise.

You can now use the select() function to make queries against the database. See https://wiki.fysik.dtu.dk/ase/
ase/db/db.html for documentation.

16 Chapter 3. Tutorials

mailto:winther@stanford.edu
https://www.postgresql.org/docs/9.6/static/index.html
https://www.postgresql.org/docs/9.6/static/index.html
https://wiki.fysik.dtu.dk/ase/install.html
https://wiki.fysik.dtu.dk/ase/ase/db/db.html
https://wiki.fysik.dtu.dk/ase/ase/db/db.html

catalysis-hub.org Documentation

3.5 Using the CatHub cli

This CLI will be used for collecting data from remote sources.

Build Status

3.5.1 Installation

Install with pip using

pip install catkit

3.5.2 Usage

Run cathub, like so

’cathub ——help

or with any of its sub-commands, like so

’cathub make_folders_template —-help

3.5.3 Examples

To create an .json input file for a folder structure

’cathub make_folders_template projectl.json —-create-template

To create a folder structure from a .json input file

’cathub make_folders_template projectl. json

Reading folders into sqlite3 db file:

’cathub folder2db <foldername>

Sending the data to the Catalysis Hub server:

’cathub db2server <dbfile>

Querying the Catalysis Hub database:

cathub reactions —g reactants=CO -g chemicalComposition=~Pt

cathub publications -g title=~Evolution -gq year=2017

3.6 IPython Notebook tutorials for APl usage

The following noteboks demonstrate how make interactive use of the Catalysis-Hub.Org API. The recommend of using
these Notebook is Jupyter Lab.

3.5. Using the CatHub cli 17

https://travis-ci.org/mhoffman/CatalysisHubCLI
http://api.catalysis-hub.org/
http://jupyterlab.readthedocs.io/

catalysis-hub.org Documentation

3.6.1 GraphQL Querying

3.6.2 Retrieve ASE Atoms object through GraphQL
3.6.3 Prototype Search

3.6.4 Search Structures and Cut Slabs

3.6.5 Get Spacegroup and Wyckoff Sites from Structure

3.7 Partner Projects

The catalysis-hub.org database is large and its possibilities are manifold. Fortunately there are two partner projects
that are best digested together: CatKit and CatLearn.

18 Chapter 3. Tutorials

http://catkit.readthedocs.io/en/latest/
http://catlearn.readthedocs.io/en/latest/

CHAPTER 4

Reference

Complete reference of each and every function.

4.1 App

API for GraphQL enhanced queries against catapp and ase-db database
Some Examples:

¢ Get total number of rows in table (in this case reactions):

{reactions (first: 0) {
totalCount
edges {
node {
id

}
H}

« Filter by reactants and products from reactions:

{reactions (reactants: "H20", products: "OH") {
edges {
node {
reactants
products
reactionEnergy
activationEnergy

}
P}

« Filter by several reactants or products from reactions:

19

catalysis-hub.org Documentation

{reactions (products: "Nstar+CH3star") {
edges {
node {
reactants
products
reactionEnergy
activationEnergy

}
H}

e Author-name from publications:

{publications (authors: "~Bajdich") {
edges {
node {
reactions {
chemicalComposition
reactants
products
reactionEnergy
}
}
}
}}

* Full text search in reactions (reactants, products, chemical composition, facet):

{reactions (textsearch: "CO CH 111") {
edges {
node {
reactants
products
publication {
title
authors

}
H}

Full text search in publications (title, authors, year):

{publications (pubtextsearch: "oxygen evolution bajdich 2017") {
edges {
node {
title
authors
year
reactions {
reactants
products

}
P}

* Distinct reactants and products from reactions (works with and without “~):

20 Chapter 4. Reference

catalysis-hub.org Documentation

{reactions (reactants: "~OH", products: "~", distinct: true) {
edges {
node {
reactants
products
reactionEnergy

}
H}

ASE structures belonging to reactions:

{reactions (reactants: "~OH", first:1) {
edges |
node {
systems {
Cifdata
}

}
b}

Get all distinct DOIs:

{publications {
edges {
node {
doi
}
}
+}

Get all entries published since (and including) 2015:

{publications (year: 2015, op: "ge", last:1) {
edges |
node {
id
year
systems {
keyValuePairs

}

}
H}

class api.CountableConnection (*args, **kwargs)
Bases: graphene.relay.connection.Connection

static resolve_total_count (root, info)
total_count = <graphene.types.scalars.Int object>

class api.CustomSQLAlchemyObjectType (*args, **kwargs)
Bases: graphene_sqglalchemy.types.SQLAlchemyObjectType

class api.FilteringConnectionField (type, *args, **kwargs)
Bases: graphene_sqglalchemy.fields.SQLAlchemyConnectionField

RELAY ARGS = ['first', 'last', 'before', 'after']

4.1. App

21

catalysis-hub.org Documentation

SPECIAL_ARGS = ['distinct', 'op', 'Jjsonkey', 'order']
classmethod get_query (model, info, **args)

class api.Information (*args, **kwargs)
Bases: api.CustomSQLAIchemyOb ject Type

class api.Key (*args, **kwargs)
Bases: api.CustomSQLAIlchemyOb ject Type

class api.Log (*args, **kwargs)
Bases: api.CustomSQLAlchemyObjectType

class api.NumberKeyValue (*args, **kwargs)
Bases: api.CustomSQLAIchemyOb ject Type

class api.Publication (*args, **kwargs)
Bases: api.CustomSQLAIlchemyOb ject Type

reactions = <graphene.types.structures.List object>
systems = <graphene.types.structures.List object>

class api.Query (*args, **kwargs)
Bases: graphene.types.objecttype.ObjectType

information = <api.FilteringConnectionField object>

key = <api.FilteringConnectionField object>

logs = <api.FilteringConnectionField object>

node = <graphene.relay.node.NodeField object>

number_ keys = <api.FilteringConnectionField object>
publications = <api.FilteringConnectionField object>
reaction_systems = <api.FilteringConnectionField object>
reactions = <api.FilteringConnectionField object>

species = <api.FilteringConnectionField object>

systems = <api.FilteringConnectionField object>
text_keys = <api.FilteringConnectionField object>

class api.Reaction (*args, **kwargs)
Bases: api.CustomSQLAIchemyOb ject Type

reaction_systems = <graphene.types.structures.List object>
systems = <graphene.types.structures.List object>

class api.ReactionSystem (*args, **kwargs)
Bases: api.CustomSQLAIlchemyOb ject Type

class api.Species (*args, **kwargs)
Bases: api.CustomSQLAlchemyObjectType

class api.System (*args, **kwargs)
Bases: api.CustomSQLAIchemyOb ject Type

log = <graphene.types.structures.List object>

publication = <graphene.types.structures.List object>

22 Chapter 4.

Reference

catalysis-hub.org Documentation

static resolve__ input_file (self, info, format="py’)
Return the structure as input for one of several DFT codes as supported by ASE. Default format is “py”.
Run:

{systems (last: 1) {
totalCount
edges {
node {
InputFile (format:"")

}
18

to show available formats. Try one of the available formats like,:

{systems (last: 10) {
totalCount
edges {
node {
InputFile (format:"espresso-in")

}
H}

to generate QE input.

class api.TextKeyValue (*args, **kwargs)
Bases: api.CustomSQLAIlchemyOb jectType

api.get_filter_ fields (model)
Generate filter fields (= comparison) from graphene_sqlalcheme model

#.. automodule:: models #:members: #:undoc-members: #:show-inheritance:

4.2 Apps

HTTP Request to the Apps backend can be made in Python using e.g. the requests library for GET requests, like so:

#!/usr/bin/env python

import Jjson
import pprint

import requests

url = 'http://api.catalysis-hub.org/apps/prototypeSearch/facet_search/"'
r = requests.get (url,
params={

'search_terms': [
'hollandite',
J 4
'facet_filters': '["spacegroup:87"]"
}
)

pprint.pprint (json.loads (r.content))

or for POST requests, like so:

4.2. Apps 23

catalysis-hub.org Documentation

#!/usr/bin/env python

import json
import pprint

import requests

url = 'http://api.catalysis-hub.org/apps/prototypeSearch/get_structure/'
r = requests.post (url,
json={
'parameters': '[3.1]",
'species': '["S"]',

'spacegroup': 221,
1)

pprint.pprint (json.loads (r.content))

That is, every function below that is declared either as a GET or a POST request can be translated into a corresponding
HTTP request by replacing every dot (‘") with a slash (*/’) and passing in arguments either as params=... (GET) or
json=... (POST).

Please refer to the following API documentation for details.

4.2.1 ActivityMaps

class apps.activityMaps.ReactionModel (xlabel=None, ylabel=None, zlabel=None, refer-

ence="")
Bases: object

get_raw_systems (filters)
get_xyz (systems)
apps.activityMaps.graphql_query (products=’products: "O", reactants=", facet="", limit=5000)

apps.activityMaps.systems (request=None)
GET: Get systems for given reactions

Parameters activityMap (str) - request Map like OER, NRR, HER. Defaults to
CO_Hydrogenation_111.

Returns
The corresponding systems in the database.
* reference(str): Reference for activity map.
* systems(list): Corresponding systems.

Return type dict

Examples

curl {ROOT}/apps/activityMaps/systems/?activityMap=0ER
curl {ROOT}/apps/activityMaps/systems/?activityMap=CO_Hydrogenation_111

24 Chapter 4. Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

catalysis-hub.org Documentation

{

—~sites in (Ni, Fe) OOH for electrocatalytic water splitting." Journal of the_

—[2] Man, Isabela C., Hail\u201l0Yan Su, Federico Calle\u2010vVallejo, Heine A.
—Hansen, Jos\u00e9 I. Mart\uOOednez, Nilay G. Inoglu, John Kitchin, Thomas F.
—~Jaramillo, Jens K. N\u00f8rskov, and Jan Rossmeisl. "Universality in oxygen,,

—evolution electrocatalysis on oxide surfaces." ChemCatChem 3, no. 7 (2011):
—1159-1165. DOI: 10.1002/cctc.201000397",
"systems": [
{
"facet": "3ML",
"formula": "Irl6Sr4051",

"uid": "5b0b436e4d3d07c3fb7ad4cee6d5975f1",
"x": 1.5028540934200003,
"y": 1.3901226701799998,

"z": -0.3208143060400004
}I
{
"facet": "100",
"formula": "Ir24053",

"uid": "b33747e9868b9514639752f1b58e2£03",
"x": 1.4204331210799999,
"y": 0.44616836241,
"z": -0.4164322559
ool

}

"reference": "[1] Friebel, Daniel, Mary W. Louie, Michal Bajdich, Kai E. Sanwald,
—Yun Cai, Anna M. Wise, Mu-Jeng Cheng et al. "Identification of highly active Fe_

—American Chemical Society 137, no. 3 (2015): 1305-1313. DOI: 10.1021/ja511559d,

4.2.2 AtoMi

4.2.3 Bulk Enumerator

apps.bulkEnumerator.get_bulk_enumerations (request=None)
Return a list of prototypes names

Parameters
* stoichiometry (str, optional)-— Stoichiometry separated by ‘_’. Defaults to ‘1°.

* num_type (str, optional) - Limit by number of ‘atoms’ or number of ‘wyckoff’
sites. Possible values are ‘atoms’ or ‘wyckoff’. Defaults to ‘atoms’.

e num_start (int, optional)- Mininum number of sites. Defaults to 1.
* num_end (int, optional)-—Maximum number of sites. Defaults to 1.

* SG_start (int, optional)- Lowest spacegroup to consider. Can be between 1 and
230. Defaults to 1.

* SG_end (int, optional)— Hightest spacegroup to consider. Can be between 1 and
230. Defaults to 10.

Returns
Dictionary of input and corresponding enumerations.

dict {input }: Input parameters. list [enumerations]: List of possible enumeations. dict {enu-
merations }: {

4.2. Apps

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

catalysis-hub.org Documentation

name: (str) Prototype Name, natom: (int) Number of Atoms, parameters: [str]
Free parameters, spaceGroupNumber: (int) The number of the spacegroup (1-230),
specie_permutations: [str] Equivalent permutations, species: [str] The possible occu-
pations, wyckoffs [str] The Wyckoff sites,

}
Return type dict {input, enumerations }

apps.bulkEnumerator.get_structure (request=None)
Construct structure from wyckoff positions, species, and other parameters

Parameters
* wyckoffPositions ([str])— List of Wyckoff positions (length one strings).
* wyckoffSpecies ([str])— Corresponding list of elements.

apps.bulkEnumerator.get_wyckoff from cif (request=None)
Function clone of get_wyckoff from_structure, except working w/ string input instead of file upload.

apps.bulkEnumerator.get_wyckoff from structure (request=None)

apps.bulkEnumerator.get_wyckoff list (request=None)
Return a list of possible wyckoff position belonging to a certain spacegroup.

Parameters
* spacegroup (int, optional)-—
* tolerance (float, optional)-—
apps.bulkEnumerator .mstripb (liste)

apps.bulkEnumerator.stripb (string)

4.2.4 CatKitDemo
4.2.5 Pourbaix diagrams
4.2.6 Prototype Search

4.2.7 Utilities

apps.utils.ase_convert (instring, informat=None, outformat=None, atoms_in=False,

atoms_out=False)
Enter a input file that is understood by ASE and return a string in a different format as written by ase.

4.3 Schema Types

e Query
* Objects
— Information
— InformationCountableConnection

— InformationCountableEdge

26 Chapter 4. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

catalysis-hub.org Documentation

- Key

KeyCountableConnection

KeyCountableEdge

NumberKeyValue

— NumberKeyValueCountableConnection
— NumberKeyValueCountableEdge

— Pagelnfo

— Publication

— PublicationCountableConnection

— PublicationCountableEdge

— Reaction

— ReactionCountableConnection

— ReactionCountableEdge

— ReactionSystem

— ReactionSystemCountable Connection

— ReactionSystemCountableEdge

Species

SpeciesCountableConnection

SpeciesCountableEdge

System

SystemCountableConnection

SystemCountableEdge

TextKeyValue

TextKeyValueCountableConnection

TextKeyValueCountableEdge
* Scalars

— Boolean

— Float

- ID

- Int

— JSONString

— String
e Interfaces

— Node

4.3. Schema Types 27

catalysis-hub.org Documentation

4.3.1 Query

The ID of the object

4.3.2 Objects

Information

The ID of the object.

InformationCountableConnection
InformationCountableEdge

The item at the end of the edge

A cursor for use in pagination

Key

The ID of the object.

KeyCountableConnection
KeyCountableEdge

The item at the end of the edge
A cursor for use in pagination

NumberKeyValue

The ID of the object.

NumberKeyValueCountableConnection
NumberKeyValueCountableEdge

The item at the end of the edge

A cursor for use in pagination

Pagelnfo

When paginating forwards, are there more items?
When paginating backwards, are there more items?
When paginating backwards, the cursor to continue.

When paginating forwards, the cursor to continue.

28

Chapter 4. Reference

catalysis-hub.org Documentation

Publication

The ID of the object.

PublicationCountableConnection
PublicationCountableEdge

The item at the end of the edge

A cursor for use in pagination
Reaction

The ID of the object.

ReactionCountableConnection
ReactionCountableEdge

The item at the end of the edge

A cursor for use in pagination
ReactionSystem

The ID of the object.

ReactionSystemCountableConnection
ReactionSystemCountableEdge

The item at the end of the edge

A cursor for use in pagination

Species

The ID of the object.

SpeciesCountableConnection
SpeciesCountableEdge

The item at the end of the edge

A cursor for use in pagination

4.3. Schema Types 29

catalysis-hub.org Documentation

System

The ID of the object.

SystemCountableConnection
SystemCountableEdge

The item at the end of the edge

A cursor for use in pagination
TextKeyValue

The ID of the object.

TextKeyValueCountableConnection
TextKeyValueCountableEdge

The item at the end of the edge

A cursor for use in pagination

4.3.3 Scalars

Boolean

The Boolean scalar type represents t rue or false.

Float

The Float scalar type represents signed double-precision fractional values as specified by IEEE 754.

ID
The ID scalar type represents a unique identifier, often used to refetch an object or as key for a cache. The ID type

appears in a JSON response as a String; however, it is not intended to be human-readable. When expected as an input
type, any string (such as "4") or integer (such as 4) input value will be accepted as an ID.

Int

The Int scalar type represents non-fractional signed whole numeric values. Int can represent values between -(2°53
- 1) and 2753 - 1 since represented in JSON as double-precision floating point numbers specifiedby IEEE 754.

JSONString

JSON String

30 Chapter 4. Reference

http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point

catalysis-hub.org Documentation

String

The String scalar type represents textual data, represented as UTF-8 character sequences. The String type is most
often used by GraphQL to represent free-form human-readable text.

4.3.4 Interfaces

Node

An object with an ID
The ID of the object.

4.3. Schema Types 31

catalysis-hub.org Documentation

32 Chapter 4. Reference

CHAPTER B

Troubleshooting

Assuming nothing helps, how to debug, get more help, file bug reports, pull-request etc..

33

catalysis-hub.org Documentation

34 Chapter 5. Troubleshooting

CHAPTER O

Indices and tables

* genindex
* modindex

e search

35

catalysis-hub.org Documentation

36 Chapter 6. Indices and tables

Python Module Index

a

api, 19

apps
apps
apps
apps
apps

.activityMaps, 24
.bulkEnumerator, 25
.catKitDemo, 26
.prototypeSearch, 26
.utils, 26

37

catalysis-hub.org Documentation

38 Python Module Index

Index

A

api (module), 19

apps.activityMaps (module), 24
apps.bulkEnumerator (module), 25
apps .catKitDemo (module), 26
apps.prototypeSearch (module), 26
apps.utils (module), 26

ase_convert () (in module apps.utils), 26

C

CountableConnection (class in api), 21
CustomSQLAlchemyObjectType (class in api), 21

F

FilteringConnectionField (class in api), 21

G

get_bulk_enumerations ()
apps.bulkEnumerator), 25
get_filter_fields () (in module api), 23

(in module

get_query () (api.FilteringConnectionField class
method), 22

get_raw_systems ()
(apps.activityMaps.ReactionModel ~— method),
24

get_structure () (in module apps.bulkEnumerator),
26

get_wyckoff_ from_cif () (in module
apps.bulkEnumerator), 26

get_wyckoff_from_structure () (in module
apps.bulkEnumerator), 26

get_wyckoff_list () (in module

apps.bulkEnumerator), 26

get_xyz () (apps.activityMaps.ReactionModel
method), 24

graphqgl_query () (in module apps.activityMaps), 24

information (api.Query attribute), 22

Information (class in api), 22

K

key (api.Query attribute), 22
Key (class in api), 22

L

log (api.System attribute), 22
Log (class in api), 22
logs (api.Query attribute), 22

M

mstripb () (in module apps.bulkEnumerator), 26

N

node (api.Query attribute), 22
number_keys (api.Query attribute), 22
NumberKeyValue (class in api), 22

P

publication (api.System attribute), 22
Publication (class in api), 22
publications (api.Query attribute), 22

Q

Query (class in api), 22

R

Reaction (class in api), 22

reaction_systems (api.Query attribute), 22
reaction_systems (api.Reaction attribute), 22
ReactionModel (class in apps.activityMaps), 24
reactions (api.Publication attribute), 22
reactions (api.Query attribute), 22
ReactionSystem (class in api), 22

RELAY_ARGS (api.FilteringConnectionField attribute),

21
resolve__input_file() (api.System static
method), 22

39

catalysis-hub.org Documentation

resolve_total_count ()
(api.CountableConnection static ~— method),
21

S

SPECIAL_ARGS (api.FilteringConnectionField at-
tribute), 22

species (api.Query attribute), 22

Species (class in api), 22

stripb () (in module apps.bulkEnumerator), 26

Systemn (class in api), 22

systems (api.Publication attribute), 22

systems (api.Query attribute), 22

systems (api.Reaction attribute), 22

systems () (in module apps.activityMaps), 24

T

text_keys (api.Query attribute), 22
TextKeyValue (class in api), 23
total_count (api.CountableConnection attribute), 21

40

Index

	Topics
	Database schema
	GraphQL Queries
	GraphQL Cheat Sheet

	Submitting data
	SUNCAT group members
	Installing CatHub
	Organizing data
	cathub organize
	cathub make_folders
	Reading into database

	Tutorials
	Searching for reaction energies
	GraphQL
	Custom GraphQL clients
	Connecting to the database with ASE db
	Using the CatHub cli
	IPython Notebook tutorials for API usage
	Partner Projects

	Reference
	App
	Apps
	Schema Types

	Troubleshooting
	Indices and tables
	Python Module Index

